a2 United States Patent

Lewak

US008959365B2

US 8,959,365 B2
Feb. 17,2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

METHODS OF PROVIDING FAST SEARCH,
ANALYSIS, AND DATA RETRIEVAL OF
ENCRYPTED DATA WITHOUT DECRYPTION

Applicant: Jerzy Lewak, Del Mar, CA (US)
Inventor:

Jerzy Lewak, Del Mar, CA (US)

Assignee: SpeedTrack, Inc., Yorba Linda, CA
(US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 32 days.

Appl. No.: 13/933,085

Filed: Jul. 1, 2013
Prior Publication Data
US 2014/0019776 Al Jan. 16, 2014

Related U.S. Application Data

Provisional application No. 61/666,917, filed on Jul. 1,
2012.

Int. CI.

GOG6F 21/62 (2013.01)

U.S. CL

CPC e, GO6F 21/6227 (2013.01)
USPC i 713/193; 726/22; 380/28
Field of Classification Search

CPC oo GOG6F 2162/27

USPC 713/193-197; 726/22-27; 380/28-30
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,383,323 A * 5/1983 Timorcccocevevvevvecnnnne 375/135
4,591,673 A * 5/1986 Leeetal.ccoevveennnn. 380/28
7,043,755 B1* 5/2006 Roger et al. .. 726/22
7,283,628 B2* 10/2007 Steinetal.ccccoceovennn 380/29
7.441,122 B2* 10/2008 Plagneo T13/182
7,593,525 B1* 9/2009 Gallagher, IIT 380/28
7,603,461 B2* 10/2009 Crosbyetal. 709/224
7,865,218 B2* 1/2011 Iguchietal. 455/574
8,102,997 B2* 1/2012 Tegliaetal. 380/29
8,175,265 B2* 52012 Cietetal. 380/29
8,417,502 B1* 4/2013 Anatietal. . .. 703/13
8,634,553 B2* 1/2014 Hataetal. 380/44
8,666,065 B2* 3/2014 Zuili ..ccoovveveiieinnn. 380/28

* cited by examiner

Primary Examiner — Haresh N Patel
(74) Attorney, Agent, or Firm — Klein, O’Neill & Singh,
LLP

(57) ABSTRACT

Methods and systems of providing remote coded data storage,
data analysis, and search and retrieval, with assurance of data
security are described. Data security is such that it protects the
data from any provider, administrator of remote services, or
anyone breaking into the servers housing the data at the
remote site. The methods include a coding schema such that
both the storage and the associated services, such as data
analysis, search and retrieval, can be provided even more
efficiently and more responsively than without the coding.
Possible applications of the methods include data storage,
powerful data search and analysis services which can all be
provided “in the Cloud” over the Internet, completely
securely, even when a customer’s private data set needs to be
uploaded to the remote site. The efficiency of analysis, and
search means that the methods may be useful even when
security of data is not an issue.

7 Claims, 5 Drawing Sheets

211
Data Entered
213 Data Converted into
Data Components
215
Data Coded Using
Forward Table
217 Data and Association
Matrix Changes
Transmitted to Server
219
Server Updates Memory

U.S. Patent Feb. 17, 2015 Sheet 1 of 5 US 8,959,365 B2

4 A

Server in the Cloud P 111
All data is only number codes

\. , _/

Communicating via the
internet using only codes

4)

Client in office 113
views decoded -
data

B /

Key on Flash
Thumb Drive

FIG. 1

U.S. Patent

Feb. 17, 2015 Sheet 2 of 5

{ Start)

v

211
N

Data Entered

A 4

213
\

Data Converted into
Data Components

A4

215
\

Data Coded Using
Forward Table

A4

217
N

Data and Association
Matrix Changes
Transmitted to Server

A 4

219

Server Updates Memory

v

(Return }

FIG. 2

US 8,959,365 B2

U.S. Patent Feb. 17, 2015 Sheet 3 of 5
(Start)
y
311
\ Query Input
v
313
\ Query Checked
315 ¥
\ Query Encoded Using
Forward Table
v
317 AN Encoded Query
Transmitted to Server
319 Y

321

323

Encoded Results
Received From Server

Encoded Results

N Decoded Using Reverse
Table
\ 4

\ Results Presented to

User

FIG. 3

US 8,959,365 B2

U.S. Patent Feb. 17, 2015 Sheet 4 of 5 US 8,959,365 B2
Conjunctions
Modified
vector A
Data
> |Af1f4fi0

Component
Vector A

4 4
Convert B to
Jbitvector Led0lilojol1]ojojofofof1]ojofo o]

Data
Component | B f1]4]10]
Vector B

FIG. 4

U.S. Patent Feb. 17, 2015 Sheet 5 of 5 US 8,959,365 B2

Disjunctions
Data
Component |A 1431487 8)9(10
Vector A

A converted

to & bit vector 1A |c2|1|0|1|1|o|o|1|1|1|1|0 0§0]0] =

Vector B
Data 4 components
Component § BJ0O[5 added
Vector B
Modified ’
vector A [Af1f1fofafafafofafafafsfolrfofo]e—

FIG.5

US 8,959,365 B2

1

METHODS OF PROVIDING FAST SEARCH,
ANALYSIS, AND DATA RETRIEVAL OF
ENCRYPTED DATA WITHOUT DECRYPTION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of the filing date of U.S.
Provisional Application No. 61/666,917, filed Jul. 1, 2012,
entitled “Methods of Providing Fast Search, Analysis, and
Data Retrieval of Encrypted Data Without Decryption” the
disclosure of which is incorporated by reference.

BACKGROUND OF THE INVENTION

The present invention relates generally to data security, and
more particularly to data coding or encryption.

Providing Cloud services for private data searches, data
mining, data extraction, and other data analysis tasks,
requires keeping the data private. The standard way to keep
data private is to encrypt it. However encrypted data has to be
decrypted during searches, slowing the process of searching
and data analysis, and providing an opportunity for a break-in
compromising the data.

Several different methods of encrypting data and reducing
the resulting hit on search performance have been proposed.

BRIEF SUMMARY OF THE INVENTION

One aspect of the invention provides a computer imple-
mented method of providing secure data storage, the data
comprised of data items which are comprised of data compo-
nents, a plurality of the data components being comprised of
a plurality of text characters, the method comprising: coding
at least all data components needing secure storage such that
each unique data component of a plurality of data compo-
nents is assigned a unique code unrelated to the semantic
meaning of the data component; storing the data using the
coded data components; ensuring that decoding a coded data
components is not needed to search for it; ensuring that to
replace each code with a corresponding data component
requires a table with at least as many code entries as there are
codes used.

Another aspect of the invention provides a computer
implemented method of providing data storage and search
services, using a client-server system, in which a client com-
puter is in a first location and a server computer is in a second
location, the database comprised of data items which are
comprised of data components, the method comprising:
choosing a plural set of data components for coding in the first
location; assigning a number code to each of the chosen data
components in the first location; assigning identifiers to each
of a plurality of data items in the first location; in the first
location, creating a code table for converting each coded data
component’s assigned number code to the data component,
such that the number code is arithmetically related to the
number of the table row which contains the data component;
and storing the number codes at the second location; wherein
the code table is stored in a location other than the second
location.

Another aspect of the invention provides a computer
implemented method of providing access to data items in a
collection of data items, using a client-server system in which
aclientis in a first location and a server is in a second location,
the method comprising: in the first location identifying data
components of data items, a plurality of data components
comprising character strings consisting of more than two

20

25

30

35

40

45

50

55

60

65

2

characters; in the first location assigning a number code to
identify each of a plurality of data components and an iden-
tifier to each of a plurality of data items; in the first location
creating a code table in which each row number is arithmeti-
cally related to the code of a data component and the corre-
sponding table cell contains the data component or a refer-
ence to the data component; storing information indicative of
the number codes in the second location; and in the second
location performing a search of data items matching a Bool-
ean query comprised of number codes of data components
with the code table stored in a location other than the second
location.

Another aspect of the invention provides a computer
implemented method of coding data by assigning whole num-
ber codes to data components of data items, the method
comprising: accepting input of a data component; comparing
the data component to other data components that have
already been coded; assigning a whole number code to the
data component; storing the data component and its code;
performing a search for a data component without decoding
the data and without adding any performance overhead as
compared with searches through uncoded data.

Another aspect of the invention provides a method of stor-
ing, searching and retrieving data such that the stored data is
coded and remains coded at all times during the searching,
retrieving and the searching is performed faster compared to
the search through the same uncoded data. In some such
aspects the searches and retrieval of the coded data are per-
formed at a first location and the retrieved data is decoded at
a second location. In some such aspects a client computer
program is located at the second location and a server com-
puter program is located at the first location.

These and other aspects of the invention are more fully
comprehended upon review of this disclosure.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a block diagram of a client-server arrangement in
accordance with aspects of the invention.

FIG. 2 is a flow diagram of a process in accordance with
aspects of the invention.

FIG. 3 is a flow diagram of a process in accordance with
aspects of the invention.

FIG. 4 illustrates aspects of a further process in accordance
with aspects of the invention.

FIG. 5 illustrates aspects of a still further process in accor-
dance with aspects of the invention.

DETAILED DESCRIPTION

The methods described here replace each word, phrase or
other data component in the data with a code, preferably a
whole number code. Data moved to a server, accessible over
a network, for example the Internet is entirely in terms of the
codes, and the server may be considered a Cloud server.
Search terms entered by a user or client software are con-
verted to respective codes and the coded query is sent to the
server. Searches are carried out by matching the codes of the
query with the codes of the data, without the need for trans-
lation. This has the advantage of keeping the data private and
an additional advantage that searches are more efficient so
responses are faster than if text were used instead of number
codes.

A table, or multiple tables relating number codes to text,
identifiers of data components, or their locations, is the key
needed for decoding the results. This key can easily fit on a
flash plug and can itself be password protected. Such an

US 8,959,365 B2

3

arrangement concentrates security control on the key which
can be kept under the data owner’s control.

An example of a client server arrangement in accordance
with aspects of the invention is illustrated in FIG. 1. A server
111 maintains data, with the data coded as numbers. A client
113 communicates with the server over a network, for
example the Internet. The client sends queries to the server
using the codes of data components, and receives responses to
queries. The client may request data from the server, in which
case the server returns the data coded as numbers. The client
decodes the data using a key, which may be stored on a
portable memory device 115, for example.

Coding of Data

In computers everything is a number. In particular, the
atoms of text are characters and each character is coded as a
whole number. This has been the practice since the start of
computers.

In many applications, using today’s computers, it is more
convenient to code larger data components, such as com-
monly occurring text character combinations, punctuation
marks, words, phrases, sentences, as also every graphic,
movie, music, sound, or other element. We will refer to these
as data components. Each component can be coded as a whole
number. Each identifiable attribute of a text or a non-text
component can be similarly coded. In documents containing
graphics, attributes of each graphic can be coded and/or the
graphic itself can be assigned a number. Some of these codes
can reference the component indirectly, for example by its
location, while others can directly reference the component.
Examples of attributes of graphics are graphic size, type
(drawing, picture, color or black and white etc.) date created,
and any other attributes that can be useful when searching,
and similarly for other data components. Considering the
example of FIG. 1, in many embodiments components, which
in various embodiments include text character combinations
and/or attributes of graphics, are coded as whole numbers,
with the numbers, being considered number codes, stored in
storage associated with the server 111. Communication
between the server and the client 113 is of the number codes,
and not the data components. A key, for example stored on a
portable memory device such as a thumb drive 115, which is
not located with or accessible by the sever, relates the number
codes to the data components and/or items.

Applications of Coding

Applications of this method of coding include data stores
of all kinds, such as for example data records in a database or
files on disk. A computer operating system can also use these
methods to facilitate locating information in files and addi-
tionally provide security of data storage and protection
against a break-in to the computer. Such protection can be
possible if all communication of other computers, with the
operating system on the protected computer, is similarly
coded. Applications which create files, such as word proces-
sors, spreadsheets, etc. can also usefully use the methods
described here to store the coded files on disk and so protected
from anyone who does not use the decoding table.

Using the system to encrypt emails can provide secure
email. For emails the initial coded vocabulary can be the
initial key. This initial key can also include codes for every
text character or more generally a character tuple. When a
new word is used by any correspondent, these tuple codes can
be used to code it. Thus the coded word can be sent to each
correspondent and the word code can be added to the key on
each user’s computer. When two correspondents each need
the same new word when corresponding with others, the same
word can be assigned multiple codes.

20

25

30

35

40

45

50

55

60

65

4

There are several ways to handle such situations. One way
is to use a server which manages coordination of the vocabu-
lary. Each user’s coded email application can automatically
notify the server of any changes in the vocabulary and the
server can update all users of the codes. Another method can
arrange to send, in an email, all changes ofthe coding key, that
are new to a correspondent. All additions to the coding key
can be performed entirely in terms of codes indicating the
translation of each character code combination to a new code
number.

We describe in detail the advantages of such whole number
coding in the context of a database application as an example.
Other applications should be evident from these descriptions.
The preferred method is based on using whole number codes
for every data component, so that each occurrence of a coded
data component is replaced by its whole number code and all
processing of the text is performed using these codes. An
immediately clear advantage is that indexing of such data
components is much more efficient. Another advantage is that
access to a particular data component code to determine its
meaning can be extremely fastifan array is used in such a way
that the code number is the index of the array or is arithmeti-
cally related to the array index at which the value is the data
component.

Although whole number codes are assumed in this descrip-
tion, any other codes, whether numbers or character combi-
nations, can be used instead. For example, there may be
occasions where decimal numbers can be conveniently used.
The whole number portion of the decimal can be related to the
array index and the decimal portion can be used to code other
dimensions of the components, such as the type of compo-
nent.

One way of coding every data component is to associate the
code directly with the data component, when the data com-
ponent is textual, or with a reference to the location ofthe data
component when it is non-textual. The assignment can use
formulas or can be arbitrary. The use of formulas however is
not as safe as when it is arbitrary and requires a table of codes.
The safest coding table is one in which the only relationship
between the codes and the data components is defined by the
table and the order of assignment can be arranged to be totally
arbitrary, or random. Such a table can be considered the “key
to the data” just like a single password or code, but one that is
much harder, or even impossible to break.

The frequency of occurrence of data components within
the data may be a target of code breaking attempts if the
subject domain of the data is known in some detail. To avoid
this possibility, the coding can use multiple codes for each of
the more frequently used data components, thus obscuring the
true frequencies of use.

Data can be stored, quite securely, encrypted using any of
the well-known encryption methods. However, the decryp-
tion during search provides an opportunity for “spying eyes”
to compromise security and the decryption time slows down
performance. Several attempts at overcoming this problem
have been made. One recent such method called CryptDB
claims an overhead of between 14.5% and 26% compared to
the unencrypted case, providing a substantial overhead to
performance or throughput. This is claimed as a great
improvement over anything previously available. Generally,
the methods described here not only do not add an overhead,
they greatly enhance performance, effectively reducing query
response times.

Coding Vs Encrypting

We use the term “coding” of data components to mean

replacing the data components by codes, each of which con-

US 8,959,365 B2

5

tains no information related to the data component, other than
the relation provided by the key.

Encrypting is usually understood to mean the coding of all
data components using a single schema based on a single
password of reasonable length and based on the textual con-
tent of each part of text. This means the result of encryption
contains within it the information contained in the encrypted
text. In contrast the number coding schema described here
should be seen as a text independent encryption of each data
component. This means that the codes do not contain with
them any information present in the text they represent. The
connection to the meaning of each code is outside and inde-
pendent of the code itself, and is provided by the key. That
information resides in the coding table (or key) alone. Such a
schema can make the breaking of the codes either totally
impractical, or impossible, even when a very large corpus of
coded data is stolen.

Database Example

If'the text data in a database is stored using a whole number
code for each word, phrase, punctuation mark, special symbol
and/or sentence, it can increase the speed of searching and
provide safe coding and storage of the data. Normal text
searches find matching words by checking the match of each
text character in each word. Searching for a whole number
code representing a word needs only to check the match of
one number. In English text, for example, the average word
length is about 5 characters, each of which, in two-byte uni-
code, uses 2 bytes. In most databases the total number of
needed data components, mostly words, will certainly not
exceed the limit of a 4 byte number (4,294,967,295). Search-
ing for each word is equivalent to finding a match to a 4 byte
number. That alone means a saving in search time.

However, a much greater time saving can be achieved
because the search Boolean can be expressed in terms of
whole number codes. As a user enters a search term, it is
converted to its number code which also determines that it
exists in the code table, and is used in the query, thereby
expressing the query in terms of number codes and Booleans.
Fast searches for data items containing data components,
involve locating a whole number code corresponding to a data
component and can be carried out using a location index
table, also called an association matrix, storing all the IDs of
data items containing each data component. One way of stor-
ing an association matrix uses a bitmap, or array of bit vec-
tors. Each row number of the matrix is the ID of a data
component and each column number is the ID of a data record
or a data item which could be a join of records. In this bitmap,
or binary version of the association matrix, a 1 in a cell in
column C and row R represents the presence of the data
component with ID number C, in the data item with ID
number R, representing the presence of an association
between the data component C and data item R. Conversely,
a zero in that cell represents no association between the
respective parts. Such a binary storage arrangement is quite
often a very sparse matrix, in which the great majority of the
cells are zeros. This means that its storage space requirements
are much larger than they need be. Table 1 illustrates a bitmap
representation of the association matrix with a simple
example. Each row in such a table is of fixed length and the
row is represented by a data component bit vector, with the
number of bits equal to the total number of data items.

To take advantage of this sparseness, some or all vectors of
an association matrix can often be more optimally stored as an
array of data component vectors, where each vector compo-
nent is the ID of a data item associated with the component.

20

25

30

35

40

45

50

55

60

65

6

This representation of the association matrix is referred to as
the ID Vector representation. Table 2 shows the example from
Table 1, represented as an array of ID Vectors or Rows, each
of which in this kind of table can have a different length, the
length of each data component vector being the count of data
items associated with the data component. In estimating stor-
age sizes, we use the average number of data items per data
component.

Inboth the bitmap and the ID Vector representations, locat-
ing a target whole number code does not need a search for any
matches, because the target whole number code is the array
index in the association matrix. This array index is related by
the compiler simply arithmetically to the address of the
respective row vector. The components of each row vector in
this association matrix are the identifiers of all the data items
containing or associated with the respective data component.

TABLE 1

Association matrix bitmap representation

row number = array

index = ID of Column number = ID of each data item
data component 1 2 3 4 5 6
0 1 1 1 1 0 0
1 0 0 1 0 1 0
2 0 0 1 1 0 1
3 1 1 0 0 1 0
TABLE 2
Association matrix
ID vector representation
row number =
array index = ID of ID of ID of
ID of data associated associated associated ID of associated
component data item data item data item data item
0 1 3 4 2
1 5 3
2 6 4 3
3 1 2 5

The storage space required for such a matrix table, even for
very large databases, is quite easily accommodated in current
computers. For example the number of unique data compo-
nents in a large database, of mostly text data items, can be as
large as 10 million. If the average number of data items
associated with a data component is about 500, the space
required to store the matrix can be about 20 GB, assuming
that we use 4 bytes to store each ID. Such matrices can be held
on disk, or in RAM. Disk access can be very fast because
searching for matching items needs to access only one vector,
for each data component comprising a query. For even faster
access, RAM (or flash RAM) can accommodate such indexes.

The most efficient structure for the association matrix can
use an array of vectors of two types. Sparse vectors can be
stored as ID vectors while the more dense ones can be stored
as bit or binary vectors. For example, if 32 bit numbers are
used for IDs, then when the density of bits in a bit vector
representation is less than or equal to 1 in 32, the bitmap
representation can be used. For other densities, the ID number
representation can be used. The first element of each vector
can represent its type.

Remote Data Storage

There are additional advantages of such data component

indexing, particularly when searches are to be carried out on

US 8,959,365 B2

7

a remote computer. An important consideration in today’s
markets is the security of data storage “in the Cloud,” or
stored in storage available over a network, generally the Inter-
net. We will refer to this and other similar arrangements as
remotely stored data.

Although security of such remotely stored data is improv-
ing, breaches have occurred in the past and will occur in the
future despite best efforts. Using the method of coding data
components and then for remote data storage, storing all data
only in terms of the whole number codes, can provide better
security. Anyone breaking in to the data storage location will
not be able to extract any information from the data without
having access to the meaning of each code, that is access to
the code table.

The coding table stores the meaning of every whole num-
ber code. This is all that needs to be secured and can be stored
on the client side, not on the remote computer. It is then up to
the user to provide security for the coding table. In case of a
break-in to the remote computer, the codes are of no use
without the coding table. The coding table is quite small in
comparison with the data and so can be stored on a flash plug
which can be stored in a safe. Communication between client
and server, often carried out over the internet, can be entirely
in terms of the code numbers and so the method also protects
against any compromised security of the communication sys-
tem.

A coding table, which we will call the key, for a large
database comprised, for example, of documents, may contain
as many as 10 million coded data components. If the average
length of a data component is assumed to be 10 two-byte
characters, the space needed for the key, uncompressed is 200
MB, easily storable on a flash disk. Of course the key can be
stored encrypted and compressed using standard encryption
and compression methods.

Transactions and Search Methods

The use of whole number codes has many applications. We
describe an application to the storage of data and the search-
ing of a database. By a database we mean a collection of any
data items, such as any document files, records or their joins,
which in general we call items. These coding methods can be
used in a traditional database, or in a TIE implementation, or
in other faceted navigation implemented databases.

The use of whole number codes of data components allows
us to perform all editing, searching and other transactions
entirely in terms of the whole number codes. It is only when
a user wishes to see any of the data components that a con-
version from whole number codes to data components is
made. The number of data components that are decoded at
one time, for display to the user, is therefore limited to those
that can be usefully examined at one time. This number is
quite small which means that their lookup can be very fast,
even if the necessary indexes are stored on disk.

For optimum lookup speed, a single index table, during
initialization of a client, can be converted to two tables. One,
the forward table, can provide a fast lookup of a text data
component to obtain its whole number code, and can be
stored as a hash table, keyed on the data component, or a
reference to it. This is used when a new entry is made, during
the coding of data, when new data is added, and when a user
enters search terms. The other, called the reverse table, can
provide a fast lookup of a whole number code to obtain the
data component. That can be stored as an array of text data
components, where the array index is the ID of the data
component. Such an array can be disk based, or stored in
RAM.

For fast location of data component 1Ds, the forward table
can be kept in RAM or on disk. In this forward table, a data

20

25

30

35

40

45

50

55

60

65

8

component (or a reference to it) can be the hash key and the
value can be the 1D assigned to that data component. Each
added data component can be checked for its presence in the
forward table. If it is already present then its ID can be used.
If it is not present then the next available ID is used and the
new entry is added to both the forward and the reverse tables.

It is often desirable to convert every data component of
each data item to a number code. All coded data can then be
stored in any convenient location with assurance of security.
When data is to be retrieved, the reverse table can be used to
convert each whole number code to a representation suitable
for transmitting to a calling program or presenting to a user.
Without access to this coding table, the meaning of the stored
whole number codes can be unavailable and so storage of
such coded data need not be secure.

An alternative to coding every data component is to not
code certain components, or certain data items. For example
the punctuation marks and special symbols, suchas : ; . %, $,
1, ?, and other symbols can be used without being coded.
However when high security is needed, this approach might
provide certain clues to a code breaker, no matter how weak
those clues may be. Security can be further enhanced if all
field names are also coded.

An additional advantage of coding every data component is
that the data storage is easier. So for example data stored using
the number codes requires some separator between the num-
bers, such as a space, or comma and any space or comma
needed in the data can require an additional space. This makes
parsing of the coded data more awkward. So it is easier if a
literal space in the data can be represented using a number
code. Similarly, if a comma is needed it can be coded. We can
then store the data using any character (except a digit of
course) as the separator between number codes.

The client-server architecture can be arranged in such a
way that the server performs all its tasks on the data using only
the number codes, while everything the client uses to display
to the user, or to use in calculations, is on the client’s com-
puter, in the translated data component form, using the
reverse table. Without compromising data security, the cod-
ing table (both forward and reverse) can be in the same loca-
tion as the client, even when the server is at some remote and
less secure location.

Using this system, data storage services can be provided
“inthe Cloud” e.g. at one or more remote locations accessible
over the Internet, with assurance that even the provider of
such a service will not be able to see the real data. Some of
those providing such services can also provide tools for
searching through the data, without any of the real data being
revealed to the provider, or to anyone having access to the
service without the key.

Offering such remote data storage services can be imple-
mented by providing the user a web location to obtain a
download of the coding software application, referred to here
as the Coder. Such a Coder can then allow the user to choose
which data sets they want to store remotely. The coder can
analyze the data on customers’ secure computers, creating the
coding table and a coded copy of the data. It can then upload
to the remote location the coded data.

When a user desires to perform a transaction or to search,
the necessary software tools can be provided from the remote
site. To perform any action on the remote data, the coding
table can be required on the client side. That coding table, as
already explained can be used to convert any entered data
components into codes and any codes returned by the server
into data components.

The following are examples of how various client con-
trolled processes can work. In a first example, discussed with

US 8,959,365 B2

9

respect to FIG. 2, data is added. In a second example, dis-

cussed with respect to FIG. 3, data is searched. In some

embodiments the process of FIGS. 2 and 3 may be performed
by a client computer in communication with a server, which
may also perform portions of the process.

Transactions
A user enters new data in block 211. The data may be

entered into a client computer, for example.

1. The entered data is converted into data components in block
213, for example by the client computer.

2. The data components are coded using the forward table in
block 215, for example by the client computer. Those data
components already assigned number codes use those
codes. New data components are assigned new number
codes, in sequence in some embodiments, which are added
to the reverse table and the forward table. Their effect on
the association matrix is also updated.

3. The new data and any changes to the association matrix are
sent to the server using codes in place of each data com-
ponent in block 217.

4. The server updates its matrix and anything else affected by
the added data in block 219.

Searches
A user inputs a search in block 311. The search terms of the

search may be entered into a client computer, for example.

1. If user inputs a data component, the entry is checked using
the forward table in block 313, for example by the client
computer, to make sure it matches one of the data compo-
nents. Matches can be checked after each character is
added to the search input, or after the input is completed.
Auto-completion can be used ifneeded. When orifthe user
chooses a data item from those presented, its number code
can be directly associated with the presented and chosen
data item. User inputs that do not match any of the data
components can be rejected, implicitly, by not accepting
the typed mismatched characters, or explicitly by notitying
the user, or both.

2. The data components in the query are converted to number
codes from the forward table in block 315, for example by
the client computer.

3.The query, comprised of number codes and when necessary
(or in some embodiments when appropriate), Boolean
operators, is sent to the server for evaluation in block 317.
For added security, Boolean operators can also be coded.

4. The server responds using number codes and item identi-
fiers which may also be in terms of number codes, and the
client computer receives the response in block 319.

5. In the response, the client computer converts the number
codes of elements, used for presentation to the user, to their
corresponding data components, using the reverse table in
block 321 and presents the response to the user in block
323.

6. If the user requests to view found items, the item codes are
converted to item references, which often comprise file
location and offsets into the file, and the requested data
items are presented to the user.

The searches on the server can be made very fast by creat-
ing an association table as an array of data component vectors,
each vector is identified by the table row number which is the
number code of the corresponding data component. The data
component vector’s components are the identifiers of all data
items containing that data component or described by it.
Boolean queries comprised of data component codes can then
be easily and efficiently evaluated as unions, intersections, or
complements of the sets of data item components of the
relevant data component vectors.

20

25

30

35

40

45

50

55

60

65

10

The server and client arrangement, in various embodi-
ments, can be any functioning database system which can be
setup to manage whole number codes instead of the uncoded
data components. There is generally no reason why any data
management system would not be able to use number codes in
place of data components. Generally, the only time that these
number codes need translating to the corresponding data
components, is when the results need to be presented to
another application, to a user, or the specific values of the data
components are needed. In essence, after the conversion to
number codes, the coded data can be stored in any database
and searched in any available way.

When calculations are to be performed on the server side
and these involve the values of the data components, the
calculations can be performed on the client where decoding is
possible. If the calculations are to be performed on the server
because they are part of the query and so determine which
items match the query, they can in most cases still be per-
formed on the client as follows.

Suppose the query comprises any condition C(S) involving
a set of data components S. Then the query can be evaluated
with the condition requiring evaluation replaced by the
requirement that all data components needed for the calcula-
tion are present in every data item. In addition the query
response can require the list of identifiers of all the data
entities in the set S. The client can then be able to apply the
condition C(S) and then send a modified query to the server
using the results of the evaluation. The evaluation can limit
the set S of data components to only those that satisfied the
criterion C(S) and the modified query can use that to deter-
mine the matching items. For most types of C(S) however the
modified query is not even necessary and a much simpler
method can be used.

For example, suppose in a healthcare database C(S) is the
condition to find all encounters in which the patient is in a
specified age range and had specified symptoms. The client
has all the field values as part of the key, so it has all the ages
in the age fields of all the records. Therefore the client can
create a coded query, with the actual ages that meet the
specified range, in a parenthesized disjunctive subset with a
conjunctive of the specified symptoms.

Methods Of Query Execution

When a relational database is used, the database’s query
execution can be used. However, when using number codes
for all data components, it is much more efficient to take
advantage of this and use more optimal methods for query
execution. One such method creates association matrices
storing the association of each record with its field values.
When the field values are all whole numbers, these can be
used in a table as the row number, while the column number
can represent the ID of a record. This table we refer to as the
matrix. Its two common implementations are as an array of
vectors, where each vector is an array of bits or an array of ID
numbers of the non-zero bits.

Using the associative matrices, the methods of executing
queries can be optimized as follows. We usually store each
row of an association matrix as an array of vectors whose
components are the column numbers of the non-zero cells in
the corresponding bit vector. Assuming the use of 32 bit IDs,
storing a matrix as a bitmap is more compact only when the
matrix is more dense than one in 32 non-zero bits. However,
when executing a query it is often more performance optimal
to convert the vectors being used in the query evaluation
process to bit vectors. The following explains one optimal set
of method steps.

1. A query typically consists of a set of data components and

a set of Boolean operators. The evaluation of such Bool-

US 8,959,365 B2

11

eans, in the simplest cases, involves unions and intersec-
tions of vector components of data component vectors,
each component is an ID of a record. So that for example
the conjunctive Boolean between data component A and
data component B is evaluated and the vector components
of the result vector C are the 1Ds of the matching items.

2. The result vector is then conjoined (or disjoined) with the
next data component vector, if any, in the Boolean and the
process proceeds in that way.

Next we describe some optimal methods of evaluating the
conjunction and the disjunction between two vectors.
Vector Conjunctions and Disjunctions

When the two vectors have components which are sorted
indexes of the non-zero bits in the corresponding bit vector
form, the common method of evaluating their conjunction or
disjunction is the well-known zig-zag method. However we
describe here a method that is faster in performance and does
not require the vector components to be sorted.
Conjunctions

Let the two vectors to be conjunctively combined be A and
B both represented in ID component form. The process is
described in terms of A and B but both these are replaced after
each step in an iterative process. The process, an example of
which is shown in FIG. 4, in illustrative form for a single B
vector, is as follows:

1. Assign a first data component vector (or more generally
query result vector) to be vector A and a next data compo-
nent vector to be vector B;

2. Convert B to a bit vector by using each component ID of the
ID vector to address the corresponding bit index of a bit
vector and setting it to 1;

3. Iterate through the ID components of vector A using each
vector component as the index into the bit vector and if that
bit component is not a 1, remove the component from
vector A;

4. The modified or temporary result vector A is then used with
the next vector assigned to B, to be conjoined with vector A
and the process repeated from step 2 until all conjunctions
are completed.

5. The resulting modified vector A is the result vector, whose
components are the IDs of the matching items.

Usually the conjunctions of only a small number of data
components are needed. After every additional conjoined
data components the number of vector components of the
resulting vector gets smaller, therefore the zig-zag method
can be quite satisfactory in performance. However when the
number of data components to be conjoined is large, the
method described can improve the performance considerably.
Disjunctions

A similar method is used to evaluate the disjunction of a set
of vectors. The optimized process for the disjunction of two
vectors A and B, an example of which is illustrated in FIG. 3,
is as follows:

1. Assign a first data component vector to vector A and a next
vector to vector B;

2. Convert A to a bit vector by using each component ID of the
ID vector to address the corresponding bit index of the bit
vector and setting it to 1;

3. Iterate through the ID components of vector B using each
component as the index of the A bit vector and setting it to
1;

4. Modified bit vector A is then used as the result vector and
disjunctively combined with the next vector assigned to B
and the process repeated from step 3 until all disjunctions
are completed.

20

25

30

35

40

45

50

55

60

65

12

5. The resulting modified vector A is the result vector, whose
component bits designate the IDs of the union set of the
components of all the disjoined vectors.

Finally we describe the counting process, the steps that
result in the counts of all items associated with each data
component. These counts we call frequencies.

Once the set of matching items is determined, the items-
to-data component matrix may be used to determine the fre-
quencies. The process steps are very similar to the disjunction
steps just described, but instead of using a bit vector for the
output vector (vector A) we use an array of counts vector
(more simply referred to as the counting vector) for vector A.
This can be an array of integers, each integer large enough to
store the largest count of items and the size of the array
sufficiently long to store the counts of associated items with
all the data components whose frequencies are needed. Each
array index is made the ID of a data component, which allows
the addressing of each counting element just like addressing
the bit of each bit vector. The steps are the following:

1. Create the counting vector array A, initialize it to an appro-
priate size and set all counts to zero;

2. Use the components of the next item vector as indexes into
the counting array and at each addressed index increment
the count;

3. Repeat step 2 until all item vectors matched by the current
query have been processed;

4. The resulting counting vector A contains the counts of the
matching items associated with every data component.
Those with zero counts can be made unavailable for con-
junctive additions to queries.

Additional Data Security
Words, under any convenient definition of the meaning of

“word” are the most common data components. Assigning
consecutive whole number codes to words and various addi-
tional symbols (such as currency signs, percent signs, punc-
tuation marks, etc) in some systematic order can provide
some clues to a very determined adversary intending to break
through the coding. One way to make that more difficult is to
assign consecutive whole number codes to a randomized
ordering of the data components. This can make it impracti-
cally difficult to discover the coding. However, a further step
can be taken to make it even more difficult to break the
coding.

If adversaries know the nature of the data, they may be able
to analyze the usage frequency of the codes and compare
them with the usage frequency of words in similar data. To
foil any such attempts, the true usage frequency of the codes
can be disguised by using multiple different whole number
codes for each of the more frequently used words, phrases or
other frequent data components. A different whole number
code of several uses of such frequent words, can then be used
for each instance of the word in any data passed to or from the
server, or for any data resident on the server.

The following is one way of achieving such a frequency
disguise. Sort the complete unique word vocabulary by the
frequency of each word’s use within the database. Then each
word with the highest frequency can be assigned the largest
number of different whole number codes, while the ones in
the lower frequency groups can be assigned a smaller number
of whole number codes. To even out the frequency of occur-
rence the number of codes to be assigned to a frequent data
component can be made approximately proportional to that
component’s frequency of occurrence in the data.

Table 3 is an example table of a small sample of relatively
few words, their average occurrence frequencies per item and
apossible choice for the number of whole number codes to be
assigned to each.

US 8,959,365 B2

13
TABLE 3
Frequencies per Relative Number of IDs to be
document frequencies assigned Word

922 15.9 16 Oof
842 14.5 15 the
518 8.9 9 and
364 6.3 6 in
345 5.9 6 is
337 5.8 6 a
337 5.8 6 to
235 4.1 4 that
161 2.8 3 are
158 2.7 3 p
149 2.6 3 as
113 1.9 2 be
112 1.9 2 with
111 1.9 2 memes
108 1.9 2 this
100 1.7 2 for

97 1.7 2 or

95 1.6 2 can

92 1.6 2 by

86 1.5 1 one

78 1.3 1 it

71 1.2 1 we

70 1.2 1 which

69 1.2 1 knowledge

67 1.2 1 an

65 1.1 1 information

64 1.1 1 cultural

58 1 1 on

In this example, the remaining words occurring less fre-
quently than the last word listed in the table can be assigned
single whole number codes.

Almost any number of IDs assigned to the frequently
occurring words, or in general data components, will distort
the actual frequency of occurrence and this may provide
sufficient security.

Example Application for Data Storage
One possible application of these methods is to provide a

web based service of secure data storage, access and analysis.

The following describes one possible implementation of such

a service.

1. A web based computer, or a virtual computer, referred to as
a remote computer, houses a data server, accessible over
the Internet.

2. A user contracts to use the service and store their data on the
remote computer

3. The user contracts to be able to:

3.1. use the data server on the remote computer to house

and maintain the data.

3.2. provide access to the data to download data records
when needed, and optionally provide data analysis and
data search capabilities.

4. The server, or a special application, downloads a coding
application, called the coder, to the client computer.

5. The coder enables a user to choose the data to be coded and
housed on the remote computer.

6. The coder processes the designated data, creates the for-
ward table and reverse table.

7. The coder codes the data components in each data item and
optionally assigns an item name, an item unique identifier,
an item location reference, and creates an item identifica-
tion table.

8. The coder sends the coded data items, such as records or
documents, to the data server in the remote location, in
which all the data components of the data items are
replaced by the corresponding number codes.

20

25

30

35

40

45

50

55

60

65

14

9. To minimize search times, the server may create an asso-
ciation matrix, storing the association between each code
of a data component and each identifier of the item con-
taining it.

10. The server may also create other useful indexes.

The server can be any database server, including a rela-
tional database server, a TIE, or any server implementing a
faceted navigation type search system. The client can be any
client able to communicate with the server and able to handle
the translation of codes.

An alternative system can store the uncoded data on the
client computer, identifying each item with a code, a location
reference, and coding each data component as in the previous
alternative. The data itself need not be coded (although it can
be coded) and can reside entirely on the client computer or on
the local area network. This arrangement can require less data
transfer from client to remote server, while allowing the
remote server to perform all searches and analysis.

Methods of Coding Data Components
A preferred embodiment can code every word in the data,

including words in the field names and table names. Here by
“words” we mean a sequence of alphanumeric characters
starting at start of text or following a designated non-alpha-
numeric character (word breaking character) and ending at
end of text or at a designated non-alphanumeric character
(word breaking character). The word breaking characters can
be chosen differently in different situations, as desired. The
word breaking character here includes the possibility of a
plural set of characters. Thus, for example a domain name,
such as uspto.gov can consider the period as a word breaking
character and apply coding to uspto and gov as two separate
words. In certain situations it can be convenient to code both
individual words and combinations of these as phrases.

Sometimes it may be convenient to have two different
coding tables, one for data storage (Data Coding Table) the
other for searches (Search Coding Table). Then the forward
Search Coding Table can code sets of synonyms of a word as
the same code, allowing searches using a synonym to suc-
ceed, while the reverse coding table would not be needed for
searching. This means that when a user enters any one of the
synonyms, the same code can be used to search the data. The
reverse coding table may only be needed for decoding the
data in the data items, which can necessarily give only one
data component, the literal one, for each code.

To allow the user to choose a synonym search or a literal
search, the forward coding table can in fact be two coding
tables (or one coding table but with two entries for each word
having a synonym): one can allow only literal coding of data
components, while the other can allow synonymous coding.

The synonym codes can be associated with every item
containing any of the synonyms while the literal codes can be
associated only with items which contain the literal data
component.

When creating the Data Coding Table for item content and
encountering portions which are binary, the content can be
splitinto some reasonable length data components, such as 10
character substrings. When creating a Search Coding Table in
these cases, the coded data may need to be parsed into text or
other useful data components before being coded.

Dealing with More Complex Data
The reverse code table, which acts as a key to the coded

data, can be stored very compactly as long as it does not

contain a great number of large data components. For
example, if all the data is textual and the chosen data compo-
nents do not comprise a large number of very long text strings,
the reverse table stored on disk will be quite small, on the
order of 100 MB. If however the data includes a very large

US 8,959,365 B2

15

number of pictures and/or large movies, and/or large numbers
of very long text strings, the size of the reverse table can
become large, its size dominated by the cumulative size of the
long strings and graphics. In those databases where such large
datais present, the data items, or just the very large data items,
can be replaced in the reverse table by references, which
specify the location of these data items. Such data items may
then need to be stored on the local area network and if security
is needed, in a secure protected location. Alternatively they
can be stored remotely, but coded in any convenient manner.
For example, pictures and movies can be coded as binary files,
with each group of binary components coded as a number and
entered into the item coding table.

The case of formatted documents forming part or all of the
data may be treated similarly to binary data. Alternatively
formatted text data can be completely coded using any num-
ber of similar methods. For example, the formatted document
may be converted to an xml format, which clearly delimits
textual content from the formatting. The current trend in fact
is to use xml formats for all documents. For those, conversion
may not be necessary. For others, it might be advisable to
convert valuable legacy documents to xml so they remain
accessible for a long time.

Such xml formatted documents can then treat the xml
formatting tags as data components, distinguished in any
convenient way, from the text content data components.
Searches on both the textual content and the formatting can
use the formatting tags.

Aggregated Use of Multiple Servers

The number coding system can be used very effectively to
search and access multiple databases using just one client and
an aggregating server.

Assume that N servers, termed slave servers, each serving
its own database using its own whole number Coding system,
referred to as local codes, are installed. An aggregating server
is also installed and configured to serve any number of clients
and to communicate with each of the slave servers. Each
client can use a coordinated set of number codes, referred to
as the global codes, to represent the query to the aggregating
server. The global codes can check each local code’s data
component and assign to it a suitable code. If the same data
component is in two or more local codes one global code can
replace it. If some or all of the slave data sets contain the same
kind of data, we can expect that there can be many same data
components amongst two or more local codes.

Each slave server, or pre-processing application, can create
the respective local codes for all its data components. Several
ways can be used to communicate securely between the
aggregating server and the slave servers.

One possible method, called the single code set method,
creates the union set of all the slave server sets of data com-
ponents and codes them using one set of codes defined by a
single pair (i.e. forward and reverse) of code tables. To be able
to use just one pair of code tables for all slave servers, each
slave server’s association matrices can be converted from the
local codes to the equivalent global codes. For this conver-
sion, a translation table for each slave server’s codes can be
created and used in the conversion.

For optimum performance in the translation process, each
local to global translation table can be implemented as an
array of code numbers, where each array element’s index is
the local code number of the data component and the
element’s value is the global code of the same data compo-
nent. This can provide the fastest lookup performance during
the conversion process.

Another method, called the local-to-global aggregation
method, can require the conversion of codes from local to

20

25

30

40

45

50

55

60

65

16

global and the reverse, to be performed in real time by the

aggregating server. For optimum performance, this can

require two conversion tables for each slave server: one using
array indexes for the local codes and the other using array
indexes for the global codes.

Assuming the local-to-global aggregation method, the
aggregating server performs the following basic functions:
1. receives a query from a client, expressed in terms of the

global codes;

2. translates the global codes used in the query to N queries,
one for each corresponding slave server, using the global-
to-local conversion tables;

3. sends each translated copy of the query to the correspond-
ing slave server;

4. receives the response from each slave server in terms of its
local codes;

5. converts the response from each slave server to use the
global codes;

6. aggregates the converted responses into one response by
creating a union of the response codes for each part of the
query;

7. sends the aggregated response to the client.

When using the single code set method, step 2 of the above
steps becomes unnecessary.

Data items can be similarly handled, except that it may be
easier to create global coding even before creating the asso-
ciation matrices. For example, each slave server, or other
local application can determine the total number of local data
items. Then each slave server, or the coding application can be
assigned a sufficient range of number codes to accommodate
all data items. In that way translation from local to global and
back would not be necessary.

The response to a query includes the unique identifiers of
the matching items (item IDs). Matching item IDs are passed
from a slave server to the aggregating server. Similarly, in
order for a client to decode the coded content of data items, it
should have the necessary code table. Therefore item 1Ds
passed to the aggregating server and passed by the aggregat-
ing server to the client as part of the response to the query,
should be able to determine to which slave database each item
belongs. This slave data information can be number coded, or
coded in any other convenient way. If it is number coded and
if the single code set method is used for data item codes, then
the range in which the code number lies can determine which
local slave server can locate the item.

The aggregating server can be in any location, either in the
same location as the client or in some remote location.
Because it is dealing only with numbers, security is reason-
ably assured.

After that, each separate data set can maintain its currency,
following transactions, locally by adding codes to new data
and possibly, though not necessarily, deleting obsolete data
codes. To make the transactions available to all users of the
aggregated data, either the aggregating server’s conversion
tables is updated, or the single code set is updated and
securely transmitted to each client, after an update of any
slave server data. For secure data, this update should be per-
formed at a location secure from break in.

During any transactions of data, supported by a slave
server, that slave server’s forward and reverse tables may
need to be updated. Updating these tables will generally only
be necessary if new whole number codes are created during
the transactions. These new codes will only be needed when
added data requires new data components not already coded
with number codes. Secure transmission of the meaning of
new codes can use individual character codes for security.

US 8,959,365 B2

17

When a transaction involves the deletion of a data compo-
nent, and there is no data remaining in the database which
contains that data component, the number code assigned to
that data component becomes available for other data com-
ponents and can be re-used. Alternatively it can be retained in
case the same data component is added in a future transaction.

When new codes of data components are added to a slave
server, the aggregating server should be updated. The follow-
ing describes a possible method of creating the aggregating
server conversion tables.

The metadata associated with each slave server comprises
the forward and reverse tables. We refer to these as the slave
tables. One embodiment of the invention assigns codes in a
slave table independently of those in another slave table. Such
tables are termed uncoordinated tables.

In another embodiment of the invention, all of the slave
tables are coordinated. This means that the same data com-
ponents have the same codes in all slave tables. In another
embodiment of the invention, not all but a plurality of slave
tables are coordinated. In this embodiment some slave tables
are coordinated while others are uncoordinated. These tables
are called the partially coordinated tables.

Coordinated tables allow a more efficient aggregation pro-
cess. However creating a coordinated set of slave tables
requires more effort and in some circumstances may not be
practical.

Using a coordinated set of slave tables the aggregating
server need only send, to each slave server, copies of the query
received from the client and then aggregate the responses and
send them back to the client.

There are other possible methods of using parallel servers
to have those servers process queries from a client. For
example, it is possible to use the text version of the data
components between the client and a securely located aggre-
gating server. Then at the aggregating server’s site convert the
query comprised of data components to each slave server’s
codes and send it to each slave server using the appropriate
codes.

The following is an example of methods that can be used to
create the conversion tables allowing quick conversion of the
slave codes to coordinated codes and vice versa. For fastest
lookup of codes in each direction two sets of translation tables
can be used. One set, consisting of one table per slave server,
or a combined table, for quick translation of a coordinated
code to the associated slave codes. The other set consisting of
one table per slave server, for the reverse lookup, for quick
translation of an uncoordinated code from a slave server to the
coordinated one. One very efficient implementation of each
such table is an array, where the array element index, or a
simple offset of the index, is the code number being looked

up.

TABLE 4
Data UID UID UID
Component Slave 1 Slave 2 Slave 3
blue 12 34
yellow 11 30 9
violet 9 12 40
green 15 44 6

20

25

30

35

40

45

50

55

60

65

TABLE 5
Data Array index =
Component coordinated ID Slave 1 ID Slave 2 ID Slave 3 ID
yellow 1 11 30 9
green 2 15 44 6
blue 3 12 34 1
violet 4 9 12 40

Given a set of uncoordinated tables (UT) one method of
creating conversion table (CT) is as follows. Preferably,
though not necessarily, start with the longest uncoordinated
forward table (UFT) (that is, the table for quick lookup given
the data component) to determine its uncoordinated 1D
(UID). This table can be stored in an associative array, that is
ahashtable, where the hash key is the data component and the
value associated with that hash key is the UID. This starting
table and its reverse, the uncoordinated reverse table (URT)
will then be the source of the starting entries, contributed by
each slave server data, to the coordinated table (CT). The
entries in the other uncoordinated tables are then added, one
atatime, to the coordinated table using any coordinated codes
already assigned to a data component and adding sequential
code numbers to any data component not yet assigned a
coordinated code.

Both the forward and reverse tables can be used to make the
aggregation process as fast as possible in both directions.
Each kind of table can be implemented as an array where the
index of the array element is the ID to be looked up. The
forward table can be an array of data component vectors
where the index of the array identifies the ID of the data
component and that vector’s components are the IDs of that
data component as used on each of the respective slave serv-
ers. Table 5 illustrates such a structure where each row is a
vector and the first cell in each vector is the array index which
is the ID of the coordinated data component.

For example, the aggregating server receives a query, using
data component IDs, from a client which uses only coordi-
nated IDs. It uses the forward table in which the row number
is the coordinated ID, CID, and the values in the row (that is,
components of the respective vector) are the respective slave
server local IDs. Thus the aggregating server uses the several
local IDs and converts the query into the several separate local
queries.

The nature of the response of the slave servers to a query
depends on the type of implementation and type of databases
used. If a normal relational database system is used, the
response to the query is a list of IDs of the matching items.
These IDs can be coordinated between the servers (for
example, by assigning a range of IDs for each local sever to
use) or they can use independent uncoordinated IDs for the
items and then the aggregating server will need to convert
these IDs to the coordinated set and return the result to the
client.

If the databases use faceted navigation, such as the TIE
database, then the aggregating server has the task of translat-
ing and uniting the list of available data components returned
by each server. The available data components are those
which are associated with any one of the matching items.

Overview of Client-Server Number Coded Process

The details of the system organization for security of the
data depend on the specifics of the application and the envi-
ronment. The following example outlines some general fea-
tures and parts.

US 8,959,365 B2

19

Number Coded Secure Data
In this the following applies:

1. All data is coded.
2. The client computer is secure from intrusion.
3. The coding key is stored on a small flash plug which can be
stored in a safe when not in use.
4. The flash plug with the coding key is plugged into the client
computer to enable access to the server and data.
5. The coding key can be zipped and passworded.
6. When a number of databases are in an organization, each
will have its coding key and each coding key can be identified
by a unique number, associating it with the database which
uses it. That association, which can be hidden from any
intruder, provides an additional safety layer.

The number coding secure system has the following parts:
1. Server which uses only the number codes.

2. The Coder which:

2.1. Creates the assignment of numbers to elements of data.

2.2. Codes each field value in each record in the data and

each field name.

2.3. Creates the new coded records, allowing the originals

to be moved to a secure place as backups.

2.4. Compresses and passwords the coding key and outputs

it to a flash drive.
3. The Code Interpreter which uses the key and:

3.1. Converts all queries from their textual to their coded

form.

3.2. Converts all responses from the server to their text

form for the client to display.

3.3. Converts any data records requested by the user from

their coded form to their text form.

The Code Interpreter in many cases can be integrated into
the client code. The Coder is usually best created as a separate
application.

The above steps are preferred whether a GIA client and server
are used or the steps are implemented as an add-on to a
relational database.

Although the invention has been discussed with respect to
various embodiments, it should be recognized that the inven-
tion comprises the novel and non-obvious claims supported
by this disclosure.

20

30

35

40

20

What is claimed is:

1. A computer implemented method of providing secure
data storage, for data comprised of data items which are
comprised of data components, a plurality of the data com-
ponents being comprised of a plurality of text characters, the
method comprising:

coding at least all data components needing secure storage

such that each unique data component of the plurality of
data components is assigned a unique code unrelated to
semantic meaning of the unique data component;
storing the data items using the coded data components;
ensuring that decoding of a particular coded data compo-
nent is not needed to search for the particular coded data
component;
ensuring that to replace each coded data component with a
corresponding data component requires a table with at
least as many code entries as there are codes assigned,
wherein each code is a number;

creating a code table storing the coded data components’

codes;

creating an association matrix storing associations of data

items with the numbers for the codes of the data com-
ponents;

wherein a specific whole number code for a code of a

specific data component in the code table is arithmeti-
cally related to a table row number which contains the
specific data component.

2. The method of claim 1 wherein the numbers for the
codes are sequential numbers.

3. The method of claim 1 wherein a majority of the coded
data components are comprised of a plurality of text charac-
ters.

4. The method of claim 1 wherein the code table comprises
alist of data components and wherein the number for the code
of'each data component is a list item number.

5. The method of claim 1 wherein the code table is imple-
mented in a software program as an array of vectors.

6. The method of claim 1 further comprising performing
coding of the data components on a client.

7. The method of claim 6 further comprising transferring
the codes for the data components to a server.

#* #* #* #* #*

